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ABSTRACT 

This study estimates the economic cost of reducing the take of sea turtles in the U.S. 

Northwest Atlantic Commercial Pelagic Longline Fishery. Sea turtles are protected under 

the Endangered Species Act. The analysis uses an output-oriented stochastic distance 

frontier methods and drew from a highly unbalanced trip-level panel dataset that had 60 

unique vessels that fished between 2006 and 2016. Our results show that mitigating the 

take of sea turtles is costly. On average, the cost of reducing the take of one sea turtle (or 

shadow price) equals $36,957. Shadow prices show significant temporal variability and 

vary by the targeting behavior of the fleets (i.e., tuna vs. swordfish trips). We also find that 

the technical efficiency of the fishing fleets varies by its targeting behavior. We conclude 

discussing bycatch management insights from our research. 

Keywords: Undesirable outputs; endangered species; commercial fisheries; stochastic 

frontier; distance function. 
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INTRODUCTION  

One pressing economic, societal and environmental issue  affecting commercial fisheries  is the  

production of undesirable outputs. Undesirable outputs  are byproducts of production processes  

that can harm the  environment or the economic sustainability of  an  industry or  a geographic area.  

Most  applied  economic analyses dealing with  undesirable outputs  have focused on  air  and  water  

pollutants such as CO2, SO2, waste, noise, etc. In fisheries, undesirable outputs  often arise because  

of economic  or  regulatory  discarding of  commercial species and/or  the  incidentally  caught  or  

‘take’1  of protected  species, such as sea turtles and marine mammals2  (Zhou et al. 2014; Färe et  

al. 2011; Huang a nd Leung 2007; Squires et  al. 2021). Non-target catch  increases  harvesting costs  

because  of the  added costs of retrieving and removing unwanted catch, replacing lost or damaged  

gear, and installing  bycatch  excluder  devices. They  can  also indirectly increase  production costs 

due to the risk of fishery  closure (Watson et al. 2006).  Additionally, bycatch mortality and its  

concomitant impact on population sizes can potentially damage the function and structure of  

ecosystems (Stohs and Heberer, 2011).  

 In the economic literature, the study of undesirable outputs first centered on who should  

bear the economic costs imposed by these negative externalities. Pigou’s  (1932)  pioneering  work 

suggested  that direct taxes  would help  mitigate these costs. Coase (1960), on the other hand,  argued  

against the use of taxes  and government intervention a nd instead proposed  bargaining between  

parties  to  achieve efficient outcomes. These seminal  studies led to a wealth of research work on  

this subject. Cornes and Sandler (1996) offer  a  good review of this  early  literature.  

 Another strand of the  economic literature considered the  impact of undesirable outputs  on  

the  production process.  Ethridge (1973) modeled the  effects of waste products and byproducts on 

output and input utilization. Pittman (1981;  1983)  underscored the importance  of accounting for  

undesirable outputs when studying e conomic efficiency and productivity, especially for  those  

industries subject to environmental regulations. Färe et al. (1989) developed a  framework  for  

measuring  technical efficiency  (TE)  that penalized  the production of undesirable outputs, under  

the assumption that bad outputs  were  not freely disposable  (e.g., abatement  is costly  since some  
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1 A ‘take’ under the Endangered Species Act (ESA) is to harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, 
or collect an ESA listed species, or to attempt to engage in any such conduct. 
2 Sea turtles and marine mammals protected under the Endangered Species Act of 1973, and the Marine Mammal 
Protection Act of 1972, respectively. 
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57 inputs  are redirected from producing the  desirable  outputs  to mitigating the production of  

undesirable ones).  

Zhou et al. (2014)  reviewed  the production economics  literature  dealing with undesirable  

outputs  and found that most studies  concentrated  on energy, paper and pulp, and agriculture  

industries. Our own review  of the literature  found a limited number of empirical studies accounting  

for undesirable outputs  when estimating production and efficiency models  in fisheries. Among  

these few studies  were Färe et al.’s  (2006, 2011)  work on the  United States  (U.S.)  Georges Bank  

multi-species otter trawl fishery, Huang and Leung’s  (2007)  article  on the Hawaii’s long line  

fishery, Reimer et  al.’s  (2017)  paper  on the Alaskan’s non-pollock groundfish trawl fishery, and  

Sheld  and Walden’s (2018) study on the  Northeast U.S. Multispecies Bottom trawlers.  

 Despite the limited  attention  to the issue of discarding  of undesirable species  in the 

productivity and efficiency  literature,  it remains a  serious  environmental and economic  concern. 

Meyer  et  al. (2017)  and  Mukherjee and Segerson (2011)  show that commercial  fishing poses  one 

of the major threats  to the  marine megafauna and  protected species.  Furthermore, Färe et al. (2011)  

warn  that ignoring the  presence  of undesirable outputs  when analyzing  fishing production  

processes  may inflate  production estimates  (i.e., productivity, TE, capacity, etc.) due to the  

omission of environmental costs  caused by discarding.  

 When studying the  economic impacts of the  incidental take of endangered species,  Huang  

and Leung (2007) argue that production models offer significant advantages over  ‘regulatory  

constraint’  models. In general, ‘regulatory constraint’  models  derive implicit bycatch  abatement 

valuations  based  on the  forgone  benefits  from  regulatory  controls  such as  area closures  for 

protection of sea turtles  (i.e., Curtis and Hicks  2000; Chakravorty  and Nemoto 2000).  Huang and  

Leung (2007) argue that  ‘regulatory  constraint’  models  provide  objectionable  estimates that are  

sensitive to the type of regulation imposed. Moreover, these  models  offer  estimates  that are  only  

valid for specific  time periods  precluding intertemporal comparisons.  Production models3, on the  

other  hand, do not require information about  specific regulatory  policies.  Instead,  they  rely on  

shadow prices to infer trade-offs  between desirable and undesirable outputs. The shadow cost of  

an  undesirable output provides a  measure  of  the  cost of  reducing (or abating)  the take of non-

                                                           
3  Production  models use mathematical  techniques to define the average technological relationship (or the Production  
Possibilities Frontier (PPF), if a frontier method is  used like in this study) between the level of inputs used and the  
resulting level of outputs for individual firms (fishers in our case) in an industry, accounting for exogenous variables  
like environment and regulations.  
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marketable species such  as sea turtles  and marine mammals (Zhou et al. 2014). If time  series data  

are av ailable, shadow prices can be estimated over time.   

The objective  of this study is to measure the  economic cost of reducing the take of  

loggerhead (Caretta caretta) and leatherback (Dermochelys  coriacea) sea turtles  in the  U.S. 

Northwest  Atlantic  Commercial Pelagic  Longline Fishery  (NWACPLF).4  In doing so, we  

implement a multi-output  stochastic  distance function  (MOSDF)  that models  the joint production  

of commercially valuable species and the  undesirable take (bycatch)  of sea turtles.  

This study adds to the limited literature  on undesirable outputs in the fishing  industry  by 

offering  an empirical application of  MOSDF  that explicitly accounts  for protected species  bycatch.  

Zhou et al. (2014)  note  that most  fishery production  studies  dealing with  undesirable outputs  use 

non-parametric data envelopment analysis (DEA) and that  only a  few studies have adopted 

stochastic  frontier analyses (SFA), like the MOSDF method. Orea  et al. (2005), Felthoven et al.  

(2009), and Solís  et al.  (2014), among others, argue that due to the  random nature of fishing 

processes,  stochastic models  should be  the preferred  method since they  allow for  the presence of  

‘noise’, a limitation in traditional DEA models.  In  addition, the parametric nature of the SFA  

generates  useful  information on the relationship between harvest levels  and factors of  production 

and the impact of  regulatory and environmental variables.  From a management perspective, the  

analysis  produces  valuable information about production tradeoffs  that  fishers  face when reducing  

their take of undesirable species.  

The rest of this paper is  organized as follows. Next, we  present  a brief description of the  

NWACPLF  and its bycatch issues. Then, we outline the  methods  and describe the data and the 

empirical model, followed by a  discussion of the results. The article concludes with a summary of  

the main findings and management  implications.  

 

THE NORTHWEST ATLANTIC COMMERCIAL PELAGIC L ONGLINE FISHERY  

AND BYCATCH BACKGROUND  

The U.S. pelagic longline fishery began targeting  highly migratory species  (HMS)  in the Atlantic  

Ocean in the early 1960’s. The fishery primarily targets swordfish (Xiphias gladius), yellowfin 

                                                           
4  In this study we  focus on measuring  the  producer bycatch  abatement costs.  Dreze and Stern (1990), clarify  that  
bycatch  also affects  firms in the value chain, consumers, and the society as a whole. Thus, our estimates can also be  
interpreted as a lower  bound estimate of society’s  willingness to pay to reduce  sea turtle bycatch.  
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tuna (Thunnus albacores), and bigeye tuna (Thunnus obesus) but also catches other species such 

as dolphinfish (Coryphaena hippurus), albacore tuna (Thunnus alalunga), and pelagic sharks 

including mako, thresher, porbeagle sharks, and various coastal sharks.  Longline vessels target 

HMS along sea surface temperature fronts (or breaks). 

Longliners have a mainline that can extend from five to forty miles in length, with 

approximately 20 to 30 baited hooks per mile. The longlines can be rigged differently depending 

on the target species. Modifications include depth of the set, hook type, hook size, bait, and light 

sticks, which are typically used when targeting swordfish. When targeting swordfish, longlines are 

deployed at sunset with light sticks and hauled at sunrise to take advantage of swordfish nocturnal 

near-surface feeding habits (NMFS 1999). Light sticks suspended on the line at certain depths 

attract baitfish, which can then attract pelagic predators. Day sets are the common practice when 

targeting tuna (Hsu et al. 2015).  

Atlantic HMS are managed under the dual authority of the Magnuson-Stevens Fishery 

Conservation and Management Act (Magnuson-Stevens Act), and the Atlantic Tunas Convention 

Act (ATCA). National Oceanic and Atmospheric Administration (NOAA) National Marine 

Fisheries Service (NMFS) has the primary authority for developing and implementing Atlantic 

HMS fishery management plans. The U.S. harvests only a small share of the Atlantic-wide HMS 

catch (NOAA 2018). These data are recorded in NOAA’s Fishing Vessel Logbook for HMS 

database. According to the International Commission for the Conservation of Atlantic Tunas 

(ICCAT), the U.S. landed 14.6% (1,522 mt) of the total Atlantic swordfish landings in 2016. The 

U.S. is an active ICCAT member and routinely contributes to the stock assessment conducted by 

its Standing Committee on Research and Statistics (SCRS). NMFS implements conservation and 

management measures adopted by ICCAT and other relevant international agreements, consistent 

with ATCA and the Magnuson-Stevens Act. 

The U.S. Atlantic Pelagic Longline fishery is managed using limited access permits, catch 

shares (i.e., Individual Bluefin Quota Program), gear restrictions, time/area closures, and bycatch 

avoidance measures (e.g., circle hooks). While this study focuses on the mid-Atlantic Bight (MAB) 

and Northeast Coastal area (NEC) swordfish and bigeye tuna fishery, there are four other distinct 

fisheries including the Gulf of Mexico yellowfin tuna fishery, the southern Atlantic (Florida East 

Coast to Cape Hatteras) swordfish fishery, the U.S. Atlantic Distant Water swordfish fishery, and 

the Caribbean tuna and swordfish fishery (also see Figure 1 for U.S. statistical reporting areas). 
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Pelagic longline vessels also frequently interact with protected species such as marine 

mammals, sea turtles and sea birds; as such, they have been classified as a ‘Category I fishery’ 

based on the guidelines of the Marine Mammal Protection Act (MMPA) of 1972. Category I 

fishery is one that has incidental take levels greater than 50 percent of any MMPA stock’s Potential 

Biological Removal rate per year, the allowable level of human-induced mortality for a marine 

mammal stock (MMPA 1972, section 1386). An observer program has been in place since 1992 

to document finfish bycatch, characterize fleet behavior, and quantify interactions with protected 

species. Data collection priorities have been to collect catch and effort data of the U.S. Atlantic 

pelagic longline fleet on HMS along with protected species takes. We used this data (i.e., observed 

sea turtles takes) with the HMS logbook data to estimate the economic value of preventing sea 

turtle take in the pelagic longline fishery which uses circle hooks (in place of a J style hook) as its 

main bycatch avoidance measure. 

The use of ‘circle’ hooks (size 16/0 or greater) was mandated in August 2004 (69 Federal 

Register 40734, July 6, 2004) based upon experimental studies conducted during 2001-2003 in the 

Northeast Distant Water (NED) fishing area (Watson et al. 2005). Circle hooks’ shape and smaller 

openings reduce the likelihood of sea turtles and marine mammals ingesting hooks or being caught. 

When hooking does occur, they are superficial and primarily in the mouth, which reduces internal 

injury and allows for a safer release. Switching to circle hooks and mackerel bait (from squid bait) 

helped reduce the incidental capture of loggerhead sea turtles by 71%-90% and leatherback sea 

turtles by 51%-66% (Watson et al., 2005). These measures continue to be in place today (NOAA 

2018). 

NOAA’s HMS logbook data shows that between 2006 and 2015, there were 114 longline 

vessels in the U.S. Atlantic, which in aggregate earned $32.41 million in revenues per annum. 

Roughly, 45% of these vessels earned 30% of the revenues in the NEC and MAB area. Between 

2006 and 2015, 445 loggerhead and 353 leatherback sea turtles were bycaught in the U.S. Atlantic 

(Figure 2). Approximately 40% of the loggerhead and 33% of the leatherback caught in the U.S. 

Atlantic, took place in the NEC and MAB regions. 

METHODS 
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173 We implement a MOSDF model to estimate the cost of sea turtle bycatch abatement accounting  

for temporal and  geographic differences, and  vessel heterogeneity.5  In general,  a MOSDF  

measures the maximum amount by which an output vector can be proportionally expanded with a  

given input vector. The  maximum feasible output vector maps the  ‘best practice’  frontier for the  

industry. This best practice frontier  depicts the boundary of the production possibility set.  MOSDF  

models are  well  suited for the  study  of  production processes  that account  for the presence  of  

multiple desirable outputs in fisheries (Solís  et al. 2014), and it can also be adapted to  

accommodate for the incidence of  undesirable outputs, such as the bycatch of sea turtles  (Färe et  

al.  1993).  MOSDF  is advantageous  for  analyzing production processes in commercial fisheries  

because it does not assume that all deviations from  the frontier are solely  explained by inefficiency,  

but also allows for stochastic or random events. In addition, the parametric nature of the MOSDF  

generates valuable information on the relationship between  outputs (harvest)  levels and  inputs  

(factors of production)  and regulatory and environmental variables (Van Nguyen et al. 2021).  

Following O rea et  al. (2005) and Coelli and Perelman (1999)  a translog  output distance  

function can be rewritten as:  

 

𝑙𝑙𝑙𝑙𝐷𝐷 𝛽𝛽0 + ∑𝑀𝑀 1 𝑀𝑀 𝑀𝑀 𝐾𝐾 
𝑜𝑜𝑜𝑜 = 𝑚𝑚=1 𝛽𝛽𝑚𝑚𝑙𝑙𝑙𝑙𝑦𝑦𝑚𝑚𝑜𝑜 + ∑𝑚𝑚=1 ∑𝑚𝑚=1 𝛽𝛽𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙𝑦𝑦𝑚𝑚𝑜𝑜𝑙𝑙𝑙𝑙𝑦𝑦𝑚𝑚𝑜𝑜 + ∑𝑘𝑘=12  𝛽𝛽𝑘𝑘𝑙𝑙𝑙𝑙𝑥𝑥𝑘𝑘𝑜𝑜 + 

 

1 ∑𝐾𝐾 ∑𝐾𝐾 𝛽𝛽 𝐾𝐾 𝑀𝑀 𝐽𝐽 𝐻𝐻 2
𝑘𝑘=1 𝑘𝑘=1 𝑘𝑘𝑘𝑘𝑙𝑙𝑙𝑙𝑥𝑥𝑘𝑘𝑜𝑜𝑙𝑙𝑙𝑙𝑥𝑥𝑘𝑘𝑜𝑜 + ∑𝑘𝑘=1 ∑𝑚𝑚=1 𝛽𝛽𝑘𝑘𝑚𝑚𝑙𝑙𝑙𝑙𝑥𝑥𝑘𝑘𝑜𝑜𝑙𝑙𝑙𝑙𝑦𝑦𝑚𝑚𝑜𝑜 + ∑𝑗𝑗 𝜃𝜃𝑗𝑗𝐺𝐺𝑗𝑗 + ∑ℎ 𝜃𝜃ℎ𝑙𝑙𝑙𝑙𝐶𝐶ℎ + 𝜔𝜔𝜔𝜔 + 𝜌𝜌𝜔𝜔              

2 

(1)  

 

where  Doi  denotes the output distance function measure,  ymi  and xki  are, respectively, the production  

level of output  m  (including desirable and undesirable outputs) and the quantity of input  k  used by  

vessel  i, Gj  is a vector of  j  dummy variables, and Ch  is a vector of  h control variables.  

 To satisfy the necessary  conditions for a well-behaved output distance function, the  

function is normalized by  an arbitrary  output, and symmetry  is imposed by setting  β mn = β nm  and  

β kl = β lk  (Coelli and Perelman 1999). After imposing these restrictions, the  method estimates  the 
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5A directional distance function procedure was also attempted; however, the results were not satisfactory. An 
anonymous review also suggested the use of fixed effect models to capture ‘fixed’ skipper and/or vessel effects. 
However, the due to highly unbalanced nature of our data, we were not able to implement alternative panel data 
techniques. 
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distance from each observation to the frontier as inefficiency (i.e., lnDoi  = -ui) and adds a  random  

noise variable (vi) into the model:  

 

−𝑙𝑙𝑙𝑙𝑦𝑦 = 𝛽𝛽 + ∑𝑀𝑀 𝛽𝛽 𝑙𝑙𝑙𝑙 𝑦𝑦𝑚𝑚𝑚𝑚 + 1
𝑜𝑜  𝑚𝑚  𝑀𝑀 
1 0  𝑚𝑚=2  ∑𝑚𝑚=2 ∑𝑀𝑀 𝛽𝛽 𝑙𝑙𝑙𝑙 𝑦𝑦

 𝑚𝑚𝑚𝑚 
𝑚𝑚=2 𝑚𝑚𝑚𝑚 𝑘𝑘=1 𝛽𝛽 𝑙𝑙𝑙𝑙𝑥𝑥𝑘𝑘𝑜𝑜 +𝑦𝑦  

1𝑚𝑚 2  𝑙𝑙𝑙𝑙 𝑦𝑦
 𝑛𝑛𝑚𝑚 + ∑𝐾𝐾 

𝑘𝑘 𝑦𝑦1𝑚𝑚 𝑦𝑦1𝑚𝑚 
1 ∑ 𝐾𝐾 ∑ 𝐾𝐾   

1 𝛽𝛽 𝐾𝐾 𝑀𝑀 𝑦𝑦𝑚𝑚𝑚𝑚 𝐽𝐽 𝐻𝐻 
𝑘𝑘=1 𝑘𝑘=  𝑘𝑘𝑘𝑘𝑙𝑙𝑙𝑙𝑥𝑥𝑘𝑘𝑜𝑜𝑙𝑙𝑙𝑙𝑥𝑥𝑘𝑘𝑜𝑜 + ∑ 𝑘𝑘=1 ∑𝑚𝑚=2 𝛽𝛽𝑘𝑘𝑚𝑚𝑙𝑙𝑙𝑙𝑥𝑥𝑘𝑘𝑜𝑜𝑙𝑙𝑙𝑙 + ∑𝑗𝑗 𝜃𝜃ℎ𝑗𝑗𝐺𝐺𝑗𝑗 + ∑ℎ 𝜃𝜃ℎ𝑙𝑙𝑙𝑙𝐶𝐶ℎ + +𝜔𝜔𝜔𝜔 +

2 𝑦𝑦1𝑚𝑚 

𝜌𝜌𝜔𝜔2 + 𝑣𝑣𝑜𝑜 + 𝑢𝑢𝑜𝑜                                                                                     (2)  

 

where vi,  is assumed to be an independent and identically  distributed normal  random variable  with 

0 mean and constant variance, iid [N~(0,𝜎𝜎2𝑣𝑣 )].  vi  is  intended to capture random events, and its  

variance,  𝜎𝜎2𝑣𝑣 , is a measure of the importance of  random shocks in determining variation in output.  

Conversely, the  inefficiency term ui  is non-negative and it is assumed to follow a half-normal  

distribution.  Differences  across vessels in the ui are intended to capture differences in skill or  

efficiency (Alvarez and  Schmidt 2006). To facilitate the interpretation of the parameters,  the left  

side of the equation is set to ln y1  rather than  -ln y1  as suggested by Coelli and Perelman (1999).  

To estimate  TE scores  in this model we  followed  Jondrow et al. (1982):  

 

𝜔𝜔𝑇𝑇𝑜𝑜 = 𝐷𝐷𝑜𝑜𝑜𝑜 = exp(E(−𝑢𝑢𝑜𝑜)|𝑣𝑣𝑜𝑜 − 𝑢𝑢𝑜𝑜)                                                                         (3)  

 

To estimate marginal (bycatch) abatement  cost,  the MOSDF  needs  to satisfy  the  weak  

disposability  assumption for  the undesirable output  since reducing bycatch imposes  a  cost  in the  

form of a reduction i n the production of  desirable outputs  when  all  inputs  are held constant. The  

weak disposability  assumption is consistent with existing  regulations  that  require a reduction in  

sea turtle takes. Take  reduction is related  to the  opportunity cost  of the  desirable output  due to  the 

consumption of scarce inputs.  Imposing  linear homogeneity in outputs  ensures that the weak  

disposability  assumption is met  (Huang and Leung 2007).   

Since a  MOSDF  measures the optimum  value that  brings the output set to the frontier  

holding  inputs constant, we also ensure  that the MOSDF  is non-increasing in undesirable output(s)  

and non-decreasing in desirable outputs. Following F are and Grosskopf (2004), we impose  

restrictions on the  signs of the  derivative  to obtain non- positive shadow prices  for the undesirable  

outputs.  
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229 Following Huang and Leung (2007) we estimate, the shadow price of a sea turtle  (pn) 

relative to  a desirable output (pm) as:  

 

𝑝𝑝 = 𝜕𝜕𝜕𝜕𝑜𝑜𝑜𝑜(𝑥𝑥,𝑦𝑦,𝑢𝑢,𝑡𝑡)/𝜕𝜕𝑢𝑢𝑛𝑛 
𝑚𝑚 × 𝑝𝑝𝑚𝑚                                                                                            (4)  

𝜕𝜕𝜕𝜕𝑜𝑜𝑜𝑜(𝑥𝑥,𝑦𝑦,𝑢𝑢,𝑡𝑡)/𝜕𝜕𝑢𝑢𝑚𝑚 

 

The  estimated shadow price reflects the trade-off  between these two outputs  (Chambers et al.  

1998). 

  

DATA AND EMPIRICAL MODEL  

Detailed trip-level data on  harvest composition, fishing ge ar and effort, fishing gr ounds, crew size, 

and vessel characteristics  between 2006 and 2016 were obtained from  NMFS. Sea turtle bycatch  

data  was  acquired  from the Pelagic Observer Program (POP), which  reports turtle  takes  from  the  

MAB and  NEC  regions. After merging these two  data sets, we obtained  a  highly unbalanced panel  

dataset  of 302 trips taken by 60 unique vessels. This database captures the activity of  

approximately  40% of the fleet  operating in the MAB  and NEC  regions. Figure 3 shows the  

sampled  fleet size and the number of  trips  taken  between 2006 and 2015.  

The empirical model  had three desirable outputs  (species or species’  groups): swordfish 

(y1);  tuna (all species,  y2); and  other marketable species (y3); one undesirable output:  total number  

of sea turtle takes  (y )6
4 ; and five  inputs:  crew size (x1); total number of hooks (x2); vessel length  

(x3),  which is  used as a proxy for  fixed capital; soak time in hours (x4); and number of sets per trips  

(x5). Similar  empirical specifications  can be found in Solís et al. (2015), Felthoven et al.  (2009), 

Huang and Leung (2007) and Orea et al. (2005), among others. Figures 4 and 5 show  commercial  

landings, and  loggerhead  and leatherback takes  over time, respectively. Observed sea turtle takes  

fluctuate from a  low of 6  in 2014  to  a high of 61 in 2008. Garrison and Stokes (2020) describe the  

cyclic pattern in sea turtle  bycatch  rate  for the  NWACPLF.  

To control for  fishing c onditions, we included stock  (spawning biomass)  indices for the  

major  species7, swordfish and tuna (bigeye, bluefin and yellowfin; this data  were  provided by  

231 

232 

233 

234 

236 

237 

238 

239 

241 

242 

243 

244 

246 

247 

248 

249 

251 

252 

253 

254 

6 Since bycatch is a rare event, both species of sea turtles (loggerhead and leatherback) were pooled into one variable 
and a monotonic transformation was applied by adding a small constant (0.001) to each observation. 
7 See Alvarez (2021) for a good discussion on the use of fish stock on production frontier analyses. 
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256 NMFS), sea surface temperature (SST)  for  average location of the trip8, and quarterly  dummy  

variables  (Jin et al.,  2002; Hsu et  al. 2015; Agar et  al. 2017). Figure 6 shows  stock indices over  

time.  

To account for  ecological differences  between the NEC and MAB  fishing grounds  we 

included a  geographical dummy variable, which  was set  equal to one if the vessel operated in the  

NEC region. Time  trends, in both the linear and quadratic forms, were  introduced to account for  

technical change.9  Table 1  reports  summary  statistics  of the data used in the analysis.  

 

RESULTS AND DISCUSSION  

Model performance and characteristics of the technology  

Table 2  presents  the parameter estimates of the stochastic translog  MOSDF  model.10  All but one  of 

the first-order  input and output  parameters  were  statistically significant  and all the parameters  

displayed the expected signs  consistent with economic theory. The null  hypothesis that technical 

inefficiency did not exist (Ho: λ  = 0) was rejected at the 1% level  suggesting  that the stochastic  

production frontier specification was  preferable to the conventional production function 

specification.  The  standard errors for  u  and v  were statistically significant indicating that skill and  

random shocks are important  factors explaining  the underlying technology.  The  estimated value  

of  λ, the ratio of the  standard errors for u  and  v  (λ =σμ/σν),  was equal to  1.725, indicating that catch  

(revenue)  differences across vessels  can  be better  explained by  fishing  skill (or TE) rather than by  

random shocks (or luck).  

 As expected, output levels  were positively  correlated with crew size, number of sets per  

trip, soak time and number of hooks. The vessel  length coefficient was  positive but not  statistically  

significant.  The  empirical model controlled  for  abundance  levels, fishing area,  seasonality  

(quarters),  and  annual  variability.  Fish  abundance  coefficients  were, as  expected, positive  for both  

tuna and swordfish  stocks  but only  statistically significant  for tuna. These  results  suggest that  an  

increase in fish abundance causes  an upward shift of the production possibility frontier  which is  

                                                           
8  SST data was obtained from the NASA’s PODACC project  (https://podaac.jpl.nasa.gov/).  
9  An anonymous reviewer suggested the use of a dummy variable to capture the relationship between set depth and  
sea turtle bycatch. Unfortunately, our data is  not rich enough at the set level to  utilize a production  frontier. Thus,  we  
defined the unit of  time as the fishing trip,  which aggregates both the soak time and  number of sets  to be inputs  in 
production  model. However,  this is an important point  for the development of conservation policies that deserves  
further  research.  
10  The  translog  functional form  was selected over other specification based on  generalized likelihood ratio test.  
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consistent with previous research (Jin et al. 2002; Solís et al. 2020; among others). As in Hsu et 

al. (2015), SST coefficient was statistically significant and negatively correlated with catch levels, 

suggesting the catch rates are higher in cooler waters. 

The NEC regional dummy variable was positive but not statistically significant indicating 

comparable productivity levels between the two fishing grounds. The statistical significance of 

quarterly dummies suggests that productivity levels increase in the late winter and fall. The time 

trend was positive but not statistically significant. Figure 7 displays the evolution of TE scores. 

The average level of TE for the studied sample was approximately 0.722, suggesting that, on 

average, the fleet operated at 72% of their potential. In other words, if the fleet was fully efficient 

(i.e., operating on its best practice frontier) then it could increase its production by 28% with the 

existing inputs. Figure 8 shows the Kernel density distribution of TE by trip types (tuna and 

swordfish trips). The distribution of TE scores for those vessels targeting tuna was significantly 

higher and narrower than for those targeting swordfish. TE averages were similar between the two 

fishing grounds. 

Shadow price of the undesirable output 

The shadow price for sea turtles (pn) was calculated, as shown in Equation 4, by multiplying the 

marginal rates of transformation between sea turtle bycatch reduction and tuna harvest 

(𝜕𝜕𝜕𝜕(𝑥𝑥,𝑢𝑢,𝑡𝑡)/𝜕𝜕𝑢𝑢𝑛𝑛 ), by the price of tuna or (pm) in our case. We used a weighted tuna price (weighted 
𝜕𝜕𝜕𝜕(𝑥𝑥,𝑢𝑢,𝑡𝑡)/𝜕𝜕𝑢𝑢𝑚𝑚 

average of all tuna species) because tuna species accounted for over 59% of the total revenues 

generated by the fleet. Swordfish and the other (marketable) species accounted for the remaining 

35% and 6% of the revenues, respectively (Table 3). 

Table 3 presents the estimated average shadow price of a sea turtle (i.e., the cost, in U.S. 

dollars, per sea turtle take) by year and for the entire study period (2006-2015).  These estimated 

values display significant temporal variability, ranging from $11,818 in 2008 to $106,916 in 2014 

(all values are in 2016 U.S. dollars). It is important to highlight that in 2014 only six sea turtles 

were reported as incidental catch, a value significantly lower than the annual-average of thirty 

turtle takes reported in the sample. This temporal variation in the shadow prices can be explained 

by: 1) changes in the ratio of sea turtle bycatch to tuna harvest; and, 2) the price of tuna. In general, 

lower turtle catch rates are associated with higher shadow prices, which is reflected by the 
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312 estimated Pearson correlation between turtle bycatch  and shadow prices  of  -0.735. High tuna  prices 

make it costlier to reduce sea turtle  bycatch, ceteris paribus. 

The average shadow price o f a sea turtle for the 10-year period was  equal to  $36,957, which 

translates to  an average conditional  ‘per trip’  cost of  $19,532.11  As indicated  earlier, our  estimates  

exhibit significant temporal  variability  as shown by  their large standard deviation ±$26,861. These 

results are in line with previous studies. For instance, in  the Hawaii’s longline fishery, Huang and  

Leung (2007), and  Curtis and Hicks (2000)  reported  sea turtle  shadow prices  of $35,736 and  

$41,624, respectively.12  These two studies  based their  shadow price  estimates as forgone  gross  

revenues using  non-parametric  methods. Similarly, Chakravorty and Nemoto (2000), using a  

forgone  profit framework, estimated a shadow price of $14,000 for sea turtles in Hawaii.  This last  

estimate is markedly lower because profit models explicitly account for production costs.  

We also estimated  the  average  trip-level  sea turtle  shadow price by  target species  (i.e., tuna  

vs. swordfish trips). In the NW Atlantic region, longlines target swordfish at night  and tuna  during 

the day. Because fishers’  targeting  behavior, influences the catch composition and input use (e.g.,  

number of  light sticks  used per set  and  the average set time)  shadow  prices  are expected to  vary 

too. Our estimates  confirm that  shadow prices  vary  by the  species targeted.  On average, vessels  

targeting swordfish have slightly lower bycatch abatement costs ($37,571)  than those  targeting 

tuna ($39,625).13  This difference is statistically significant based on a t-test with a p-value < 0.001.  

These results suggest that  cost-effective bycatch reducing  management proposals  should  

encourage  vessels targeting swordfish to reduce their take of sea turtles.  

Last,  we estimated shadow prices  by fishing  ground. Between 2006 and 2015, 104 sea 

turtles were incidentally  caught  in  the MAB and another  191 in  the  NEC. Despite of the difference  

in  the  total number of  takes, shadow prices  were similar  in these  two areas  ($35,754 in the  MAB 

and $37,521 in  the NEC). The difference between  these two  values were found not statistically  

significant,  indicating that the  average cost  of reducing the  sea turtle  bycatch  does not vary  by  

fishing ground.  

 

                                                           
11  This value was estimated using  conditional survival probabilities  per event (see Montgomery et al., 1994).  
12  These values  were transformed from the original studies into 2016 U.S.  dollars to make them comparable  with our  
results.  
13  It is important to indicate, that  we used the market price of tuna the estimation of equation 4 for  both cases, vessels  
targeting tuna and  swordfish, to make the estimates comparable.  
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339 CONCLUDING REMARKS   

We  estimated  the shadow price of reducing the take of sea turtles in the U.S.  NWACPLF  using  a 

multi-output stochastic distance function. The shadow  price  of  an undesirable output provides  a  

reliable proxy  of  the  forgone  revenues due to bycatch mitigation. Our study adds to the literature  

by accounting  for temporal, geographic differences and vessel heterogeneity  in the estimation 

bycatch  abatement  costs, a limitation found in previous studies  that used  ‘regulatory constraint’  

models. The parametric nature of  the model also generates valuable information on the relationship  

between harvest levels and factors of production  and the impact of regulatory  and environmental  

variables.   

We find that reducing the take of sea turtles in the NWACPLF is costly. The longline  fleet  

cannot decrease  turtle  mortality without losing revenue. The 10-year  average shadow  price for a 

sea turtle was  $36,957, which represents an average conditional cost ‘per trip’  of $19,532.  These  

estimates are  high considering that the  average revenue per trip  was  $24,322. The model  can also  

produce shadow prices  that vary by  trip characteristics  (e.g., targeted species, location, season,  

etc.) which  can be used to tailor different avoidance and bycatch mitigation management policies.   

For instance, vessels targeting tuna were found to have, on average, higher shadow prices than  

those targeting swordfish indicating that bycatch abatement was more expensive for tuna vessels. 

Therefore, if managers are interested in lowering bycatch abatement costs, then they should 

consider management proposals that encourage reducing ‘sea turtle takes’ in the swordfish fishery.  

Shadow prices can also be used to inform about policy tradeoffs dealing w ith time-area closure  

proposals. 

Although shadow prices  can offer valuable insight, the complexity  and scope of sea turtle  

bycatch issues  may require a  combination of approaches. Squires et al  (2021) identifies  four main 

approaches:  (1) private solutions, including voluntary, moral suasion, and intrinsic motivation  such 

as  nesting protection projects (Gjertson et al.  , 2014;  Moore et al. 2009); (2) ‘command-and-

control’  regulation  such as  gear modifications (e.g. Watson et al. 2005) and bycatch hotspot  

modeling (FAO, 2009; Ecocast14); (3) incentive-based; and (4) hybrid of ‘command and control’  

and incentive-based regulation using  liability laws.  Clearly, the design of sound sea turtle  

conservation and protection policies requires examining biological, economic, social, and equity  

factors simultaneously (Kitts et al., 2021; Bisack and Magnusson, 2016; Squires et al. 2021).  
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Table 1. Observed trip-level stat

 Variable (Units)  Mean 
  Swordfish (lbs.) (y1)  2,038 

istics of varia

 Std. Dev. 
 3,418 

bles used i

 Min 
 0.1 

n the empirical model   

 Max 
 30,106 

  Tuna (lbs.) (y2)  3,389  3,622  0.1  22,006 
  Other (lbs.) (y3)  1,034  1,255  0.1  6,553 

  Loggerheads (No.) (y4)  0.60  1.57  0.0  15 
  Leatherback (No.) (y4)  0.36  0.96  0.0  9 

  Crew (No.) (x1)  3.96  0.79  2.0  6 
  Length (foot) (x3)  57.30  11.75  39.0  85 

  Set (No.) (x5)  6.00  5.75  1.0  24 
   Soak time (hrs.) (x4)  20.00  5.81  6.0  46 

  Hooks (No.) (x2)  4,787  3,489  320.0  18,502 

 

   483 

482 
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 Parameter  Coefficient   Parameter  Coefficient 
  y2  
 y3  
 y4  

y22  
y33  
y44  
y23  
y24  
y44  

   x1  
 x2  
  x3  
 x4  
  x5  
 x11 

 x22 

 x33 

 x44 

 x55 

 x12 

 x13 

 x14 

 x15 

 x23 

 x24 

 x25 

 x34 

 -0.266*** 
 -0.173*** 
 -0.073*** 
 -0.322*** 
 -0.031*** 

 -0.014** 
 0.250 
 0.058* 

-0.427  
 0.469*** 

 0.179* 
 0.061 

 0.029** 
 0.497*** 

 1.481 
-0.888  

 0.246* 
 0.186* 

-0.060  
 0.032*** 

-0.580  
 0.070* 

 0.003 
 0.029* 

-0.545  
-0.202  

 0.042* 

  x34 

  x45 

 y2x1  
 y2x2  
 y2x3  
 y2x4  
 y2x5  
 y3x1  
 y3x2  
 y3x3  
 y3x4  
 y3x5  
 y4x1  
 y4x2  
 y4x3  
 y4x4  
 y4x5  
  NEC 
   Stock (Tuna) 

  Stock (Swordfish)  
  SST 
  Q1 

  Q2 

  Q4 

  t 
t2   

  

 -0.0546*** 
 0.070* 

 0.003 
 0.029* 

-0.046*  
 -0.038*** 

-0.019  
 -0.036*** 

-0.002  
 0.099*** 

 0.0701* 
 0.0028 

-0.045  
-0.074*  

 0.083 
 0.087 
 0.166 
 0.267 

 0.071*** 
 0.052 

 -0.245** 
 0.347** 

 0.115 
 0.218* 

 0.015 
 0.004 

 
 Constant 

Sigma-u  
 Sigma-v 

Λ  
 Log-Likelihood 

 N 
  

 5.536***    
 0.698***    
 0.405***    
 1.725***    

-232.5     
 302    

 

 
 

484 Table 2. Parameter estimates of the output distance function  

485 

486 *P < 0.10;  **P < 0.05;  ***P < 0.01.  
Note: y1  (swordfish) is absent from the estimates because it was used  to  impose homogeneity.  487 
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   489 

488 Table 3. Total revenue by year and species 

Year Swordfish Tuna 
(all species) Other 

No. 
Turtles 

Captured 

Total 
Revenue 

Overall 
Shadow Price 

Sea Turtle 
2006 139,890 236,133 19,157 22 395,180 20,369 
2007 236,874 248,464 21,298 30 506,636 19,150 
2008 356,273 235,190 33,881 60 625,344 11,818 
2009 279,252 354,849 57,508 18 691,609 43,570 
2010 239,546 577,021 47,214 22 863,781 44,522 
2011 286,657 531,217 53,219 28 871,093 35,277 
2012 207,594 533,786 48,567 32 789,947 27,993 
2013 357,241 547,048 74,544 48 978,833 23,124 
2014 145,040 534,125 66,552 6 745,717 106,916 
2015 229,905 581,051 66,009 27 876,965 36,830 
Average 247,827 437,888 48,795 29.3 734,511 36,957 
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490 Figure 1. The geographic zones are referred to  as Caribbean (CAR),  Gulf of Mexico  
(GOM),  Florida east coast (FEC), South Atlantic Bight (SAB), Mid-Atlantic Bight (MAB),  
northeast coastal (NEC), northeast distant (NED), Sargasso Sea (SAR), north central  
Atlantic (NCA), tuna north (TUN), and tuna south (TUS).   

491 
492 
493 
494 

495 
496 Source: Cramer and Adams (2000). 
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497 Figure 2.  NEC/MAB loggerhead and leatherback bycatch  estimates  (2006-2015).  

498 

499 Source: Fairfield et al. (2006) to Garrison and Stokes (2020)  

 

Figure 3. Number of  vessels and trips  by year.  
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  507 

503 Figure 4. Production of desirable  outputs  by year  

504 

505 

506 Figure 5. Sea  turtle takes by year.  
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508 Figure 6. Spawning  biomass  estimates by year.  
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510 

511 Figure 7. Technical Efficiency Scores  (2006-2015).  
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514 Figure 8. Kernel density  distribution of TE  by trip type.  
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