

Measuring the economic abatement cost of sea turtle bycatch in the Northwest Atlantic Commercial Pelagic Longline Fishery.

Daniel Solís*, Kathryn Bisack**, John Walden**, Paul Richards*** and Juan Agar***

* Agribusiness Program, College of Agriculture and Food Sciences, Florida A&M University.

** Northeast Fisheries Science Center, National Oceanic and Atmospheric Administration.

*** Southeast Fisheries Science Center, National Oceanic and Atmospheric Administration.

ABSTRACT

9 This study estimates the economic cost of reducing the take of sea turtles in the U.S.
10 Northwest Atlantic Commercial Pelagic Longline Fishery. Sea turtles are protected under
11 the Endangered Species Act. The analysis uses an output-oriented stochastic distance
12 frontier methods and drew from a highly unbalanced trip-level panel dataset that had 60
13 unique vessels that fished between 2006 and 2016. Our results show that mitigating the
14 take of sea turtles is costly. On average, the cost of reducing the take of one sea turtle (or
15 shadow price) equals \$36,957. Shadow prices show significant temporal variability and
16 vary by the targeting behavior of the fleets (i.e., tuna vs. swordfish trips). We also find that
17 the technical efficiency of the fishing fleets varies by its targeting behavior. We conclude
18 discussing bycatch management insights from our research.

20 **Keywords:** Undesirable outputs; endangered species; commercial fisheries; stochastic
21 frontier; distance function.

22 JEL: D24; Q22

24 **Acknowledgements:** We would like to thank Julio del Corral, Eric Thunberg, Mike
25 Simpkins, Alex Chester, George Silva and two anonymous reviewers for their useful
26 comments and suggestions. The financial support of NOAA's Office of Science and
27 Technology is also gratefully acknowledged. The views and opinions expressed or implied
28 in this article are those of the authors and do not necessarily reflect the position of the
29 National Marine Fisheries Service at NOAA.

30 **INTRODUCTION**

31 One pressing economic, societal and environmental issue affecting commercial fisheries is the
32 production of undesirable outputs. Undesirable outputs are byproducts of production processes
33 that can harm the environment or the economic sustainability of an industry or a geographic area.
34 Most applied economic analyses dealing with undesirable outputs have focused on air and water
35 pollutants such as CO₂, SO₂, waste, noise, etc. In fisheries, undesirable outputs often arise because
36 of economic or regulatory discarding of commercial species and/or the incidentally caught or
37 ‘take’¹ of protected species, such as sea turtles and marine mammals² (Zhou et al. 2014; Färe et
38 al. 2011; Huang and Leung 2007; Squires et al. 2021). Non-target catch increases harvesting costs
39 because of the added costs of retrieving and removing unwanted catch, replacing lost or damaged
40 gear, and installing bycatch excluder devices. They can also indirectly increase production costs
41 due to the risk of fishery closure (Watson et al. 2006). Additionally, bycatch mortality and its
42 concomitant impact on population sizes can potentially damage the function and structure of
43 ecosystems (Stohs and Heberer, 2011).

44 In the economic literature, the study of undesirable outputs first centered on who should
45 bear the economic costs imposed by these negative externalities. Pigou’s (1932) pioneering work
46 suggested that direct taxes would help mitigate these costs. Coase (1960), on the other hand, argued
47 against the use of taxes and government intervention and instead proposed bargaining between
48 parties to achieve efficient outcomes. These seminal studies led to a wealth of research work on
49 this subject. Cornes and Sandler (1996) offer a good review of this early literature.

50 Another strand of the economic literature considered the impact of undesirable outputs on
51 the production process. Ethridge (1973) modeled the effects of waste products and byproducts on
52 output and input utilization. Pittman (1981; 1983) underscored the importance of accounting for
53 undesirable outputs when studying economic efficiency and productivity, especially for those
54 industries subject to environmental regulations. Färe et al. (1989) developed a framework for
55 measuring technical efficiency (TE) that penalized the production of undesirable outputs, under
56 the assumption that bad outputs were not freely disposable (e.g., abatement is costly since some

¹ A ‘take’ under the Endangered Species Act (ESA) is to harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, or collect an ESA listed species, or to attempt to engage in any such conduct.

² Sea turtles and marine mammals protected under the Endangered Species Act of 1973, and the Marine Mammal Protection Act of 1972, respectively.

57 inputs are redirected from producing the desirable outputs to mitigating the production of
58 undesirable ones).

59 Zhou et al. (2014) reviewed the production economics literature dealing with undesirable
60 outputs and found that most studies concentrated on energy, paper and pulp, and agriculture
61 industries. Our own review of the literature found a limited number of empirical studies accounting
62 for undesirable outputs when estimating production and efficiency models in fisheries. Among
63 these few studies were Färe et al.'s (2006, 2011) work on the United States (U.S.) Georges Bank
64 multi-species otter trawl fishery, Huang and Leung's (2007) article on the Hawaii's long line
65 fishery, Reimer et al.'s (2017) paper on the Alaskan's non-pollock groundfish trawl fishery, and
66 Sheld and Walden's (2018) study on the Northeast U.S. Multispecies Bottom trawlers.

67 Despite the limited attention to the issue of discarding of undesirable species in the
68 productivity and efficiency literature, it remains a serious environmental and economic concern.
69 Meyer et al. (2017) and Mukherjee and Segerson (2011) show that commercial fishing poses one
70 of the major threats to the marine megafauna and protected species. Furthermore, Färe et al. (2011)
71 warn that ignoring the presence of undesirable outputs when analyzing fishing production
72 processes may inflate production estimates (i.e., productivity, TE, capacity, etc.) due to the
73 omission of environmental costs caused by discarding.

74 When studying the economic impacts of the incidental take of endangered species, Huang
75 and Leung (2007) argue that production models offer significant advantages over 'regulatory
76 constraint' models. In general, 'regulatory constraint' models derive implicit bycatch abatement
77 valuations based on the forgone benefits from regulatory controls such as area closures for
78 protection of sea turtles (i.e., Curtis and Hicks 2000; Chakravorty and Nemoto 2000). Huang and
79 Leung (2007) argue that 'regulatory constraint' models provide objectionable estimates that are
80 sensitive to the type of regulation imposed. Moreover, these models offer estimates that are only
81 valid for specific time periods precluding intertemporal comparisons. Production models³, on the
82 other hand, do not require information about specific regulatory policies. Instead, they rely on
83 shadow prices to infer trade-offs between desirable and undesirable outputs. The shadow cost of
84 an undesirable output provides a measure of the cost of reducing (or abating) the take of non-

³ Production models use mathematical techniques to define the average technological relationship (or the Production Possibilities Frontier (PPF), if a frontier method is used like in this study) between the level of inputs used and the resulting level of outputs for individual firms (fishers in our case) in an industry, accounting for exogenous variables like environment and regulations.

85 marketable species such as sea turtles and marine mammals (Zhou et al. 2014). If time series data
86 are available, shadow prices can be estimated over time.

87 The objective of this study is to measure the economic cost of reducing the take of
88 loggerhead (*Caretta caretta*) and leatherback (*Dermochelys coriacea*) sea turtles in the U.S.
89 Northwest Atlantic Commercial Pelagic Longline Fishery (NWACPLF).⁴ In doing so, we
90 implement a multi-output stochastic distance function (MOSDF) that models the joint production
91 of commercially valuable species and the undesirable take (bycatch) of sea turtles.

92 This study adds to the limited literature on undesirable outputs in the fishing industry by
93 offering an empirical application of MOSDF that explicitly accounts for protected species bycatch.
94 Zhou et al. (2014) note that most fishery production studies dealing with undesirable outputs use
95 non-parametric data envelopment analysis (DEA) and that only a few studies have adopted
96 stochastic frontier analyses (SFA), like the MOSDF method. Orea et al. (2005), Felthoven et al.
97 (2009), and Solís et al. (2014), among others, argue that due to the random nature of fishing
98 processes, stochastic models should be the preferred method since they allow for the presence of
99 ‘noise’, a limitation in traditional DEA models. In addition, the parametric nature of the SFA
100 generates useful information on the relationship between harvest levels and factors of production
101 and the impact of regulatory and environmental variables. From a management perspective, the
102 analysis produces valuable information about production tradeoffs that fishers face when reducing
103 their take of undesirable species.

104 The rest of this paper is organized as follows. Next, we present a brief description of the
105 NWACPLF and its bycatch issues. Then, we outline the methods and describe the data and the
106 empirical model, followed by a discussion of the results. The article concludes with a summary of
107 the main findings and management implications.

108

109 **THE NORTHWEST ATLANTIC COMMERCIAL PELAGIC LONGLINE FISHERY 110 AND BYCATCH BACKGROUND**

111 The U.S. pelagic longline fishery began targeting highly migratory species (HMS) in the Atlantic
112 Ocean in the early 1960’s. The fishery primarily targets swordfish (*Xiphias gladius*), yellowfin

⁴ In this study we focus on measuring the producer bycatch abatement costs. Dreze and Stern (1990), clarify that bycatch also affects firms in the value chain, consumers, and the society as a whole. Thus, our estimates can also be interpreted as a lower bound estimate of society’s willingness to pay to reduce sea turtle bycatch.

113 tuna (*Thunnus albacores*), and bigeye tuna (*Thunnus obesus*) but also catches other species such
114 as dolphinfish (*Coryphaena hippurus*), albacore tuna (*Thunnus alalunga*), and pelagic sharks
115 including mako, thresher, porbeagle sharks, and various coastal sharks. Longline vessels target
116 HMS along sea surface temperature fronts (or breaks).

117 Longliners have a mainline that can extend from five to forty miles in length, with
118 approximately 20 to 30 baited hooks per mile. The longlines can be rigged differently depending
119 on the target species. Modifications include depth of the set, hook type, hook size, bait, and light
120 sticks, which are typically used when targeting swordfish. When targeting swordfish, longlines are
121 deployed at sunset with light sticks and hauled at sunrise to take advantage of swordfish nocturnal
122 near-surface feeding habits (NMFS 1999). Light sticks suspended on the line at certain depths
123 attract baitfish, which can then attract pelagic predators. Day sets are the common practice when
124 targeting tuna (Hsu et al. 2015).

125 Atlantic HMS are managed under the dual authority of the Magnuson-Stevens Fishery
126 Conservation and Management Act (Magnuson-Stevens Act), and the Atlantic Tunas Convention
127 Act (ATCA). National Oceanic and Atmospheric Administration (NOAA) National Marine
128 Fisheries Service (NMFS) has the primary authority for developing and implementing Atlantic
129 HMS fishery management plans. The U.S. harvests only a small share of the Atlantic-wide HMS
130 catch (NOAA 2018). These data are recorded in NOAA's Fishing Vessel Logbook for HMS
131 database. According to the International Commission for the Conservation of Atlantic Tunas
132 (ICCAT), the U.S. landed 14.6% (1,522 mt) of the total Atlantic swordfish landings in 2016. The
133 U.S. is an active ICCAT member and routinely contributes to the stock assessment conducted by
134 its Standing Committee on Research and Statistics (SCRS). NMFS implements conservation and
135 management measures adopted by ICCAT and other relevant international agreements, consistent
136 with ATCA and the Magnuson-Stevens Act.

137 The U.S. Atlantic Pelagic Longline fishery is managed using limited access permits, catch
138 shares (i.e., Individual Bluefin Quota Program), gear restrictions, time/area closures, and bycatch
139 avoidance measures (e.g., circle hooks). While this study focuses on the mid-Atlantic Bight (MAB)
140 and Northeast Coastal area (NEC) swordfish and bigeye tuna fishery, there are four other distinct
141 fisheries including the Gulf of Mexico yellowfin tuna fishery, the southern Atlantic (Florida East
142 Coast to Cape Hatteras) swordfish fishery, the U.S. Atlantic Distant Water swordfish fishery, and
143 the Caribbean tuna and swordfish fishery (also see Figure 1 for U.S. statistical reporting areas).

144 Pelagic longline vessels also frequently interact with protected species such as marine
145 mammals, sea turtles and sea birds; as such, they have been classified as a ‘Category I fishery’
146 based on the guidelines of the Marine Mammal Protection Act (MMPA) of 1972. Category I
147 fishery is one that has incidental take levels greater than 50 percent of any MMPA stock’s Potential
148 Biological Removal rate per year, the allowable level of human-induced mortality for a marine
149 mammal stock (MMPA 1972, section 1386). An observer program has been in place since 1992
150 to document finfish bycatch, characterize fleet behavior, and quantify interactions with protected
151 species. Data collection priorities have been to collect catch and effort data of the U.S. Atlantic
152 pelagic longline fleet on HMS along with protected species takes. We used this data (i.e., observed
153 sea turtles takes) with the HMS logbook data to estimate the economic value of preventing sea
154 turtle take in the pelagic longline fishery which uses circle hooks (in place of a J style hook) as its
155 main bycatch avoidance measure.

156 The use of ‘circle’ hooks (size 16/0 or greater) was mandated in August 2004 (69 Federal
157 Register 40734, July 6, 2004) based upon experimental studies conducted during 2001-2003 in the
158 Northeast Distant Water (NED) fishing area (Watson et al. 2005). Circle hooks’ shape and smaller
159 openings reduce the likelihood of sea turtles and marine mammals ingesting hooks or being caught.
160 When hooking does occur, they are superficial and primarily in the mouth, which reduces internal
161 injury and allows for a safer release. Switching to circle hooks and mackerel bait (from squid bait)
162 helped reduce the incidental capture of loggerhead sea turtles by 71%-90% and leatherback sea
163 turtles by 51%-66% (Watson et al., 2005). These measures continue to be in place today (NOAA
164 2018).

165 NOAA’s HMS logbook data shows that between 2006 and 2015, there were 114 longline
166 vessels in the U.S. Atlantic, which in aggregate earned \$32.41 million in revenues per annum.
167 Roughly, 45% of these vessels earned 30% of the revenues in the NEC and MAB area. Between
168 2006 and 2015, 445 loggerhead and 353 leatherback sea turtles were bycaught in the U.S. Atlantic
169 (Figure 2). Approximately 40% of the loggerhead and 33% of the leatherback caught in the U.S.
170 Atlantic, took place in the NEC and MAB regions.

171

172 **METHODS**

173 We implement a MOSDF model to estimate the cost of sea turtle bycatch abatement accounting
 174 for temporal and geographic differences, and vessel heterogeneity.⁵ In general, a MOSDF
 175 measures the maximum amount by which an output vector can be proportionally expanded with a
 176 given input vector. The maximum feasible output vector maps the ‘best practice’ frontier for the
 177 industry. This best practice frontier depicts the boundary of the production possibility set. MOSDF
 178 models are well suited for the study of production processes that account for the presence of
 179 multiple desirable outputs in fisheries (Solís et al. 2014), and it can also be adapted to
 180 accommodate for the incidence of undesirable outputs, such as the bycatch of sea turtles (Färe et
 181 al. 1993). MOSDF is advantageous for analyzing production processes in commercial fisheries
 182 because it does not assume that all deviations from the frontier are solely explained by inefficiency,
 183 but also allows for stochastic or random events. In addition, the parametric nature of the MOSDF
 184 generates valuable information on the relationship between outputs (harvest) levels and inputs
 185 (factors of production) and regulatory and environmental variables (Van Nguyen et al. 2021).

186 Following Orea et al. (2005) and Coelli and Perelman (1999) a translog output distance
 187 function can be rewritten as:

188

$$189 \ln D_{oi} = \beta_0 + \sum_{m=1}^M \beta_m \ln y_{mi} + \frac{1}{2} \sum_{m=1}^M \sum_{n=1}^M \beta_{mn} \ln y_{mi} \ln y_{ni} + \sum_{k=1}^K \beta_k \ln x_{ki} + \\ 190 \frac{1}{2} \sum_{k=1}^K \sum_{l=1}^K \beta_{kl} \ln x_{ki} \ln x_{li} + \sum_{k=1}^K \sum_{m=1}^M \beta_{km} \ln x_{ki} \ln y_{mi} + \sum_j^J \theta_j G_j + \sum_h^H \theta_h \ln C_h + \omega T + \rho T^2 \\ 191 (1)$$

192

193 where D_{oi} denotes the output distance function measure, y_{mi} and x_{ki} are, respectively, the production
 194 level of output m (including desirable and undesirable outputs) and the quantity of input k used by
 195 vessel i , G_j is a vector of j dummy variables, and C_h is a vector of h control variables.

196 To satisfy the necessary conditions for a well-behaved output distance function, the
 197 function is normalized by an arbitrary output, and symmetry is imposed by setting $\beta_{mn} = \beta_{nm}$ and
 198 $\beta_{kl} = \beta_{lk}$ (Coelli and Perelman 1999). After imposing these restrictions, the method estimates the

⁵A directional distance function procedure was also attempted; however, the results were not satisfactory. An anonymous review also suggested the use of fixed effect models to capture ‘fixed’ skipper and/or vessel effects. However, the due to highly unbalanced nature of our data, we were not able to implement alternative panel data techniques.

199 distance from each observation to the frontier as inefficiency (*i.e.*, $\ln D_{oi} = -u_i$) and adds a random
200 noise variable (v_i) into the model:

201

$$202 -\ln y_{1i} = \beta_0 + \sum_{m=2}^M \beta_m \ln \frac{y_{mi}}{y_{1i}} + \frac{1}{2} \sum_{m=2}^M \sum_{n=2}^M \beta_{mn} \ln \frac{y_{mi}}{y_{1i}} \ln \frac{y_{ni}}{y_{1i}} + \sum_{k=1}^K \beta_k \ln x_{ki} + \\ 203 \frac{1}{2} \sum_{k=1}^K \sum_{l=1}^K \beta_{kl} \ln x_{ki} \ln x_{li} + \sum_{k=1}^K \sum_{m=2}^M \beta_{km} \ln x_{ki} \ln \frac{y_{mi}}{y_{1i}} + \sum_j^J \theta_{hj} G_j + \sum_h^H \theta_h \ln C_h + +\omega T + \\ 204 \rho T^2 + v_i + u_i \quad (2)$$

205

206 where v_i , is assumed to be an independent and identically distributed normal random variable with
207 0 mean and constant variance, iid $[N \sim (0, \sigma_v^2)]$. v_i is intended to capture random events, and its
208 variance, σ_v^2 , is a measure of the importance of random shocks in determining variation in output.
209 Conversely, the inefficiency term u_i is non-negative and it is assumed to follow a half-normal
210 distribution. Differences across vessels in the u_i are intended to capture differences in skill or
211 efficiency (Alvarez and Schmidt 2006). To facilitate the interpretation of the parameters, the left
212 side of the equation is set to $\ln y_1$ rather than $-\ln y_1$ as suggested by Coelli and Perelman (1999).

213 To estimate TE scores in this model we followed Jondrow et al. (1982):

214

$$215 TE_i = D_{oi} = \exp(E(-u_i)|v_i - u_i) \quad (3)$$

216

217 To estimate marginal (bycatch) abatement cost, the MOSDF needs to satisfy the weak
218 disposability assumption for the undesirable output since reducing bycatch imposes a cost in the
219 form of a reduction in the production of desirable outputs when all inputs are held constant. The
220 weak disposability assumption is consistent with existing regulations that require a reduction in
221 sea turtle takes. Take reduction is related to the opportunity cost of the desirable output due to the
222 consumption of scarce inputs. Imposing linear homogeneity in outputs ensures that the weak
223 disposability assumption is met (Huang and Leung 2007).

224 Since a MOSDF measures the optimum value that brings the output set to the frontier
225 holding inputs constant, we also ensure that the MOSDF is non-increasing in undesirable output(s)
226 and non-decreasing in desirable outputs. Following Fare and Grosskopf (2004), we impose
227 restrictions on the signs of the derivative to obtain non-positive shadow prices for the undesirable
228 outputs.

229 Following Huang and Leung (2007) we estimate, the shadow price of a sea turtle (p_n)
230 relative to a desirable output (p_m) as:

231

232
$$p_n = \frac{\partial Doi(x,y,u,t)/\partial u_n}{\partial Doi(x,y,u,t)/\partial u_m} \times p_m \quad (4)$$

233

234 The estimated shadow price reflects the trade-off between these two outputs (Chambers et al.
235 1998).

236

237 **DATA AND EMPIRICAL MODEL**

238 Detailed trip-level data on harvest composition, fishing gear and effort, fishing grounds, crew size,
239 and vessel characteristics between 2006 and 2016 were obtained from NMFS. Sea turtle bycatch
240 data was acquired from the Pelagic Observer Program (POP), which reports turtle takes from the
241 MAB and NEC regions. After merging these two data sets, we obtained a highly unbalanced panel
242 dataset of 302 trips taken by 60 unique vessels. This database captures the activity of
243 approximately 40% of the fleet operating in the MAB and NEC regions. Figure 3 shows the
244 sampled fleet size and the number of trips taken between 2006 and 2015.

245 The empirical model had three desirable outputs (species or species' groups): swordfish
246 (y_1); tuna (all species, y_2); and other marketable species (y_3); one undesirable output: total number
247 of sea turtle takes (y_4)⁶; and five inputs: crew size (x_1); total number of hooks (x_2); vessel length
248 (x_3), which is used as a proxy for fixed capital; soak time in hours (x_4); and number of sets per trips
249 (x_5). Similar empirical specifications can be found in Solís et al. (2015), Felthoven *et al.* (2009),
250 Huang and Leung (2007) and Orea *et al.* (2005), among others. Figures 4 and 5 show commercial
251 landings, and loggerhead and leatherback takes over time, respectively. Observed sea turtle takes
252 fluctuate from a low of 6 in 2014 to a high of 61 in 2008. Garrison and Stokes (2020) describe the
253 cyclic pattern in sea turtle bycatch rate for the NWACPLF.

254 To control for fishing conditions, we included stock (spawning biomass) indices for the
255 major species⁷, swordfish and tuna (bigeye, bluefin and yellowfin; this data were provided by

⁶ Since bycatch is a rare event, both species of sea turtles (loggerhead and leatherback) were pooled into one variable and a monotonic transformation was applied by adding a small constant (0.001) to each observation.

⁷ See Alvarez (2021) for a good discussion on the use of fish stock on production frontier analyses.

256 NMFS), sea surface temperature (SST) for average location of the trip⁸, and quarterly dummy
257 variables (Jin et al., 2002; Hsu et al. 2015; Agar et al. 2017). Figure 6 shows stock indices over
258 time.

259 To account for ecological differences between the NEC and MAB fishing grounds we
260 included a geographical dummy variable, which was set equal to one if the vessel operated in the
261 NEC region. Time trends, in both the linear and quadratic forms, were introduced to account for
262 technical change.⁹ Table 1 reports summary statistics of the data used in the analysis.

263

264 **RESULTS AND DISCUSSION**

265 *Model performance and characteristics of the technology*

266 Table 2 presents the parameter estimates of the stochastic *translog* MOSDF model.¹⁰ All but one of
267 the first-order input and output parameters were statistically significant and all the parameters
268 displayed the expected signs consistent with economic theory. The null hypothesis that technical
269 inefficiency did not exist ($H_0: \lambda = 0$) was rejected at the 1% level suggesting that the stochastic
270 production frontier specification was preferable to the conventional production function
271 specification. The standard errors for u and v were statistically significant indicating that skill and
272 random shocks are important factors explaining the underlying technology. The estimated value
273 of λ , the ratio of the standard errors for u and v ($\lambda = \sigma_u/\sigma_v$), was equal to 1.725, indicating that catch
274 (revenue) differences across vessels can be better explained by fishing skill (or TE) rather than by
275 random shocks (or luck).

276 As expected, output levels were positively correlated with crew size, number of sets per
277 trip, soak time and number of hooks. The vessel length coefficient was positive but not statistically
278 significant. The empirical model controlled for abundance levels, fishing area, seasonality
279 (quarters), and annual variability. Fish abundance coefficients were, as expected, positive for both
280 tuna and swordfish stocks but only statistically significant for tuna. These results suggest that an
281 increase in fish abundance causes an upward shift of the production possibility frontier which is

⁸ SST data was obtained from the NASA's PODACC project (<https://podaac.jpl.nasa.gov/>).

⁹ An anonymous reviewer suggested the use of a dummy variable to capture the relationship between set depth and sea turtle bycatch. Unfortunately, our data is not rich enough at the set level to utilize a production frontier. Thus, we defined the unit of time as the fishing trip, which aggregates both the soak time and number of sets to be inputs in production model. However, this is an important point for the development of conservation policies that deserves further research.

¹⁰ The *translog* functional form was selected over other specification based on generalized likelihood ratio test.

282 consistent with previous research (Jin et al. 2002; Solís et al. 2020; among others). As in Hsu *et*
283 *al.* (2015), SST coefficient was statistically significant and negatively correlated with catch levels,
284 suggesting the catch rates are higher in cooler waters.

285 The NEC regional dummy variable was positive but not statistically significant indicating
286 comparable productivity levels between the two fishing grounds. The statistical significance of
287 quarterly dummies suggests that productivity levels increase in the late winter and fall. The time
288 trend was positive but not statistically significant. Figure 7 displays the evolution of TE scores.
289 The average level of TE for the studied sample was approximately 0.722, suggesting that, on
290 average, the fleet operated at 72% of their potential. In other words, if the fleet was fully efficient
291 (i.e., operating on its best practice frontier) then it could increase its production by 28% with the
292 existing inputs. Figure 8 shows the Kernel density distribution of TE by trip types (tuna and
293 swordfish trips). The distribution of TE scores for those vessels targeting tuna was significantly
294 higher and narrower than for those targeting swordfish. TE averages were similar between the two
295 fishing grounds.

296

297 *Shadow price of the undesirable output*

298 The shadow price for sea turtles (p_n) was calculated, as shown in Equation 4, by multiplying the
299 marginal rates of transformation between sea turtle bycatch reduction and tuna harvest
300 ($\frac{\partial D(x,u,t)/\partial u_n}{\partial D(x,u,t)/\partial u_m}$), by the price of tuna or (p_m) in our case. We used a weighted tuna price (weighted
301 average of all tuna species) because tuna species accounted for over 59% of the total revenues
302 generated by the fleet. Swordfish and the other (marketable) species accounted for the remaining
303 35% and 6% of the revenues, respectively (Table 3).

304 Table 3 presents the estimated average shadow price of a sea turtle (i.e., the cost, in U.S.
305 dollars, per sea turtle take) by year and for the entire study period (2006-2015). These estimated
306 values display significant temporal variability, ranging from \$11,818 in 2008 to \$106,916 in 2014
307 (all values are in 2016 U.S. dollars). It is important to highlight that in 2014 only six sea turtles
308 were reported as incidental catch, a value significantly lower than the annual-average of thirty
309 turtle takes reported in the sample. This temporal variation in the shadow prices can be explained
310 by: 1) changes in the ratio of sea turtle bycatch to tuna harvest; and, 2) the price of tuna. In general,
311 lower turtle catch rates are associated with higher shadow prices, which is reflected by the

312 estimated Pearson correlation between turtle bycatch and shadow prices of -0.735. High tuna prices
313 make it costlier to reduce sea turtle bycatch, *ceteris paribus*.

314 The average shadow price of a sea turtle for the 10-year period was equal to \$36,957, which
315 translates to an average conditional ‘per trip’ cost of \$19,532.¹¹ As indicated earlier, our estimates
316 exhibit significant temporal variability as shown by their large standard deviation $\pm \$26,861$. These
317 results are in line with previous studies. For instance, in the Hawaii’s longline fishery, Huang and
318 Leung (2007), and Curtis and Hicks (2000) reported sea turtle shadow prices of \$35,736 and
319 \$41,624, respectively.¹² These two studies based their shadow price estimates as forgone gross
320 revenues using non-parametric methods. Similarly, Chakravorty and Nemoto (2000), using a
321 forgone profit framework, estimated a shadow price of \$14,000 for sea turtles in Hawaii. This last
322 estimate is markedly lower because profit models explicitly account for production costs.

323 We also estimated the average trip-level sea turtle shadow price by target species (i.e., tuna
324 vs. swordfish trips). In the NW Atlantic region, longlines target swordfish at night and tuna during
325 the day. Because fishers’ targeting behavior, influences the catch composition and input use (e.g.,
326 number of light sticks used per set and the average set time) shadow prices are expected to vary
327 too. Our estimates confirm that shadow prices vary by the species targeted. On average, vessels
328 targeting swordfish have slightly lower bycatch abatement costs (\$37,571) than those targeting
329 tuna (\$39,625).¹³ This difference is statistically significant based on a t-test with a p-value < 0.001.
330 These results suggest that cost-effective bycatch reducing management proposals should
331 encourage vessels targeting swordfish to reduce their take of sea turtles.

332 Last, we estimated shadow prices by fishing ground. Between 2006 and 2015, 104 sea
333 turtles were incidentally caught in the MAB and another 191 in the NEC. Despite of the difference
334 in the total number of takes, shadow prices were similar in these two areas (\$35,754 in the MAB
335 and \$37,521 in the NEC). The difference between these two values were found not statistically
336 significant, indicating that the average cost of reducing the sea turtle bycatch does not vary by
337 fishing ground.

338

¹¹ This value was estimated using conditional survival probabilities per event (see Montgomery et al., 1994).

¹² These values were transformed from the original studies into 2016 U.S. dollars to make them comparable with our results.

¹³ It is important to indicate, that we used the market price of tuna the estimation of equation 4 for both cases, vessels targeting tuna and swordfish, to make the estimates comparable.

339 **CONCLUDING REMARKS**

340 We estimated the shadow price of reducing the take of sea turtles in the U.S. NWACPLF using a
341 multi-output stochastic distance function. The shadow price of an undesirable output provides a
342 reliable proxy of the forgone revenues due to bycatch mitigation. Our study adds to the literature
343 by accounting for temporal, geographic differences and vessel heterogeneity in the estimation
344 bycatch abatement costs, a limitation found in previous studies that used ‘regulatory constraint’
345 models. The parametric nature of the model also generates valuable information on the relationship
346 between harvest levels and factors of production and the impact of regulatory and environmental
347 variables.

348 We find that reducing the take of sea turtles in the NWACPLF is costly. The longline fleet
349 cannot decrease turtle mortality without losing revenue. The 10-year average shadow price for a
350 sea turtle was \$36,957, which represents an average conditional cost ‘per trip’ of \$19,532. These
351 estimates are high considering that the average revenue per trip was \$24,322. The model can also
352 produce shadow prices that vary by trip characteristics (e.g., targeted species, location, season,
353 etc.) which can be used to tailor different avoidance and bycatch mitigation management policies.
354 For instance, vessels targeting tuna were found to have, on average, higher shadow prices than
355 those targeting swordfish indicating that bycatch abatement was more expensive for tuna vessels.
356 Therefore, if managers are interested in lowering bycatch abatement costs, then they should
357 consider management proposals that encourage reducing ‘sea turtle takes’ in the swordfish fishery.
358 Shadow prices can also be used to inform about policy tradeoffs dealing with time-area closure
359 proposals.

360 Although shadow prices can offer valuable insight, the complexity and scope of sea turtle
361 bycatch issues may require a combination of approaches. Squires et al (2021) identifies four main
362 approaches: (1) private solutions, including voluntary, moral suasion, and intrinsic motivation such
363 as nesting protection projects (Gjertson et al. , 2014; Moore et al. 2009); (2) ‘command-and-
364 control’ regulation such as gear modifications (e.g. Watson et al. 2005) and bycatch hotspot
365 modeling (FAO, 2009; Ecocast¹⁴); (3) incentive-based; and (4) hybrid of ‘command and control’
366 and incentive-based regulation using liability laws. Clearly, the design of sound sea turtle
367 conservation and protection policies requires examining biological, economic, social, and equity
368 factors simultaneously (Kitts et al., 2021; Bisack and Magnusson, 2016; Squires et al. 2021).

¹⁴ https://coastwatch.pfeg.noaa.gov/ecocast/map_product.html

369

370 **REFERENCES**

371 Agar, J., S. Shivlani, and D. Solís. 2017. The Commercial Trap Fishery in the Commonwealth of
372 Puerto Rico: an Economic, Social, and Technological Profile. *North American Journal of
373 Fisheries Management*, 37: 778-788.

374 Alvarez, A. and P. Schmidt. 2006. Is skill more important than luck in explaining fish catches?
375 *Journal of Productivity Analysis*, 26: 15-25.

376 Alvarez, A. 2021. Comparison of Proxies for Fish Stock. A Monte Carlo Analysis. *Fisheries
377 Research*, 238: 105901

378 Bisack, K. and G. Magnusson. 2016. Measuring Management Success for Protected Species:
379 Looking beyond Biological Outcomes. *Frontiers in Marine Science*, 3:61.

380 Chakravorty, U. and K. Nemoto. 2000. Modeling the effects of area closure and tax policies: a
381 spatial-temporal model of the Hawaii longline fishery. *Marine Resource Economics*, 15:
382 179–204.

383 Coase, R. 1960. The Problem of Social Cost. *The Journal of Law and Economics*, 3: 1-44.

384 Coelli, T., and S. Perelman. 1999. A comparison of parametric and non-parametric distance
385 functions: with application to European Railways. *European Journal of Operational
386 Research*, 117: 326-339.

387 Cornes, R., and T. Sandler. 1996. *The Theory of Externalities, Public Goods, and Club Goods*.
388 Cambridge: Cambridge University Press.

389 Curtis, R.E., and R. L. Hicks. 2000. The cost of sea turtle preservation: the case of Hawaii's
390 pelagic longliners. *American Journal of Agricultural Economics*, 82:1191–1197.

391 Dreze, J. and N. Stern. 1990. Policy Reform, Shadow Prices, and Market Prices. *Journal of Public
392 Economics* 42: 1-45.

393 Ethridge, D. 1973. The Inclusion of Wastes in the Theory of the Firm. *Journal of Political
394 Economy*, 816: 1430–1441.

395 Färe, R., J. Kirkley, and J. Walden. 2011. Measuring Fishing Capacity When Some Outputs Are
396 Undesirable. *Eastern Economic Journal*, 37: 553-570.

397 Färe, R., J. Kirkley, and J. Walden. 2006. Adjusting Technical Efficiency to Reflect Discarding:
398 The Case of the U.S. Georges Bank Multi-Species Otter Trawl Fishery. *Fisheries Research*,
399 78: 257-265.

400 Färe, R., and S. Grosskopf. 2004. Modeling undesirable factors in efficiency evaluation: comment.
401 *European Journal of Operational Research*, 157 (1):242–245.

402 Fare, R. S. Grosskopf, C. Lovell and S. Yaisawarng. 1993. Derivation of Shadow Prices for
403 Undesirable Outputs: A Distance Function Approach. *The Review of Economics and*
404 *Statistics*, 75: 374-380.

405 Färe, R., S. Grosskopf, C. Lovell and C. Pasurka. 1989. Multilateral Productivity Comparisons
406 When Some Outputs are Undesirable: A Non-Parametric Approach. *Review of Economics*
407 and *Statistics*, 71: 90–98.

408 Felthoven, R., Horrace, W. and K. Schnier-. (2009). Estimating heterogeneous capacity and
409 capacity utilization in a multi-species fishery. *Journal of Productivity Analysis*: 32, 173–189.

410 Garrison, L.P., and L. Stokes-. 2020. Estimate Bycatch of Marine Mammals and Sea Turtles in the
411 U.S. Atlantic Pelagic Longline Fleet During 1997. NOAA Technical Memorandum NOAA
412 PRD Contribution: #PRD-2020-05:61 p.

413 Gjertsen, H., Squires, D., Dutton, P., and T. Eguchi. 2014. Cost-Effectiveness of Alternative
414 Conservation Strategies with Application to the Pacific Leatherback Turtle. *Conserv. Biol.*,
415 28 (1): 140-149.

416 Hsu, A., Boustany, A., Roberts, J., Chang, J., and P. Halpin. 2015. Tuna and swordfish catch in
417 the U.S. Northwest Atlantic longline fishery in relation to mesoscale eddies. *Fish.*
418 *Oceanogr.*, 24: 508-520.

419 Huang, H., P. Leung. 2007. Modeling Protected Species as an Undesirable Output: The Case of
420 Sea Turtle Interactions in Hawaii's Longline Fishery. *Journal of Environmental*
421 *Management*, 84: 523-533.

422 Jin, D.. E. Thunberg, H. Kite-Powell, and K. Blake. 2002. Total Factor Productivity Change in the
423 New England Groundfish Fishery: 1964–1993. *Journal of Environmental Economics and*
424 *Management*, 44: 540-556.

425 Jondrow, J., K. Lovell, I. Materov, and P. Schmidt. 1982. On the estimation of technical
426 inefficiency in the stochastic frontier production model. *Journal of Econometrics*, 19: 233-
427 238.

428 Kitts, A., L. Benaka, D. Heinemann, S. Lovell, N. Olsen, and D. Squires (editors). 2021. Workshop
429 Report: Economic Aspects of Bycatch Reduction. NOAA Tech. Memo. NMFSF/SPO-214,
430 46 p.

431 Meyer S., B. Robertson, B. Chilvers, and M. Krkošek. 2017. Population decline linked to by-
432 catch. *Proceedings of the National Academy of Sciences* 114: 11781-11786.

433 Montgomery, C., G. Brown, and D. Adams. 1994. The Marginal Cost of Species Preservation:
434 The Northern Spotted Owl. *Journal of Environmental Economics and Management*, 26:
435 111-128.

436 Moore, J.E., B.P. Wallace, R.L Lewison, R. Zydelis, T.M. Cox, and L.B. Crowder. 2009. A review
437 of marine mammal, sea turtle, and seabird bycatch in USA fisheries and the role of policy in
438 shaping management. *Marine Policy*, 33:435-451.

439 Mukherjee, Z., and K. Segerson. 2011. Turtle Excluder Device Regulation and Shrimp Harvest:
440 The Role of Behavioral and Market Responses. *Marine Resource Economics*, 26: 173-189.

441 NMFS. 1999. Final fishery management plan for Atlantic tunas, swordfish and sharks. NOAA,
442 NMFS, HMS Management Division.

443 NOAA. 2018. Stock Assessment and Fishery Evaluation (SAFE) Report for Atlantic Highly
444 Migratory Species. Highly Migratory Species Management Division, NOAA Fisheries, 1315
445 East-West Highway, Silver Spring, MD 20910. 231p. 2014 – current reports:
446 <https://www.fisheries.noaa.gov/content/atlantic-hms-stock-assessment-and-fisheries-evaluationreports>

447

448 Orea, L., Alvarez, A., and C. Morrison Paul. 2005. Modeling and measuring production processes
449 for a multi-species fishery: alternative technical efficiency estimates for the northern Spain
450 hake fishery. *Natural Resource Modeling*, 18: 183–213.

451 Pigou, A. 1932. The Economics of Welfare. London: MacMillan and Co.

452 Pittman, R. 1981. Issues in pollution control: interplant cost differences and economics of scale.
453 *Land Economics*, 57:1–17.

454 Pittman, R. 1983. Multilateral Productivity Comparisons with Undesirable Outputs. *The Economic
455 Journal*, 93(372): 883–891.

456 Reimer, M., J. Abbott, and A. Haynie. 2017. Empirical Models of Fisheries Production: Conflating
457 Technology with Incentives? *Marine Resource Economics* 32: 169-190.

458 Shephard, R. W. 1953. *Cost and Production Functions*, Princeton University Press, Princeton, NJ,
459 USA-.

460 Sheld, A., and J. Walden. 2018. An Analysis of Fishing Selectivity for Northeast US Multispecies
461 Bottom trawlers. *Marine Resource Economics*, 33(4): 331-350.

462 Solís, D., J. Agar, and J. del Corral. 2020. Diversification, Efficiency and Productivity in Catch
463 Share Fisheries. *Fishery Research*, 226: 105532.

464 Solís, D., J. Agar, and J. del Corral. 2015. ITQs and Total Factor Productivity Changes: The Case
465 of the Gulf of Mexico Red Snapper Fishery. *Marine Policy*, 62: 347-357.

466 Solís, D., J. del Corral, L. Perruso, and J. Agar. 2014. Evaluating the Impact of Individual Fishing
467 Quotas (IFQs) on the Technical Efficiency and Composition of the US Gulf of Mexico Red
468 Snapper Commercial Fishing Fleet. *Food Policy*, 46: 74-83.

469 Squires D., L.T. Balance, L, Dagorn, P.H. Dutton, and R. Lent. 2021. Mitigating Bycatch: Novel
470 Insights to Multidisciplinary Approaches. *Front. Mar. Sci.*, 8:613285.

471 Stohs, S., and C. Heberer. 2011. Which Commercial Swordfish Gear is Best for Balancing
472 Protected Species Conservation and Fishing Opportunity? In: Conservation of Pacific sea
473 turtles. (eds. Dutton, P.H., D. Squires and M. Ahmed). Honolulu: University of Hawaii Press.

474 Van Nguyen, Q., S. Pascoe, L. Coglan, and S. Nghiem. 2021. The sensitivity of efficiency scores
475 to input and other choices in stochastic frontier analysis: an empirical investigation. *J. Prod.*
476 *Anal.* 55: 31–40.

477 Watson, J., S. Epperly, A. Shah, and D. Foster. 2005. Fishing methods to reduce sea turtle mortality
478 associated with pelagic longlines. *Can. J. Fish. Aquat. Sci.*, 62:965-981.

479 Zhou, P., X. Zhou, and L. Fan. 2014. On Estimating Shadow Prices of Undesirable Outputs with
480 Efficiency Models: A Literature Review. *Applied Energy*, 130: 799-806.

481

482 **Table 1. Observed trip-level statistics of variables used in the empirical model**

Variable (Units)	Mean	Std. Dev.	Min	Max
Swordfish (lbs.) (y_1)	2,038	3,418	0.1	30,106
Tuna (lbs.) (y_2)	3,389	3,622	0.1	22,006
Other (lbs.) (y_3)	1,034	1,255	0.1	6,553
Loggerheads (No.) (y_4)	0.60	1.57	0.0	15
Leatherback (No.) (y_4)	0.36	0.96	0.0	9
Crew (No.) (x_1)	3.96	0.79	2.0	6
Length (foot) (x_3)	57.30	11.75	39.0	85
Set (No.) (x_5)	6.00	5.75	1.0	24
Soak time (hrs.) (x_4)	20.00	5.81	6.0	46
Hooks (No.) (x_2)	4,787	3,489	320.0	18,502

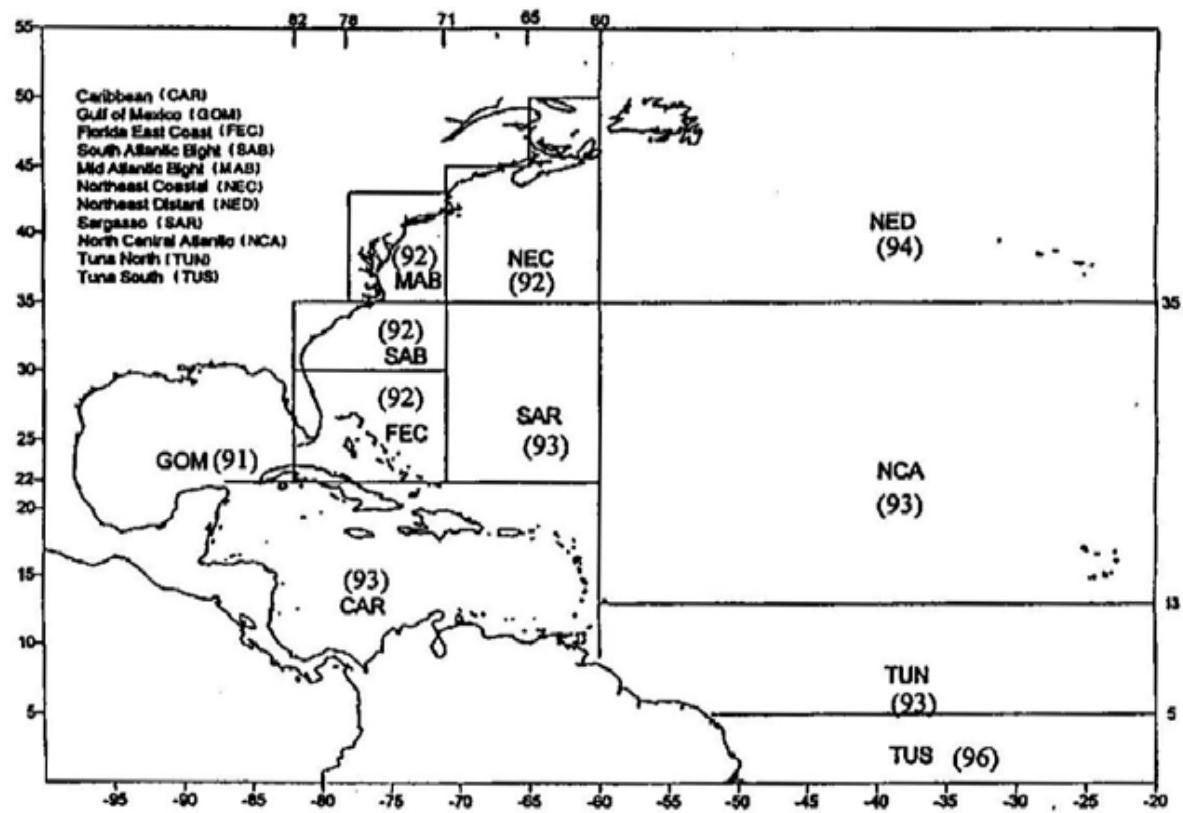
483

484 **Table 2. Parameter estimates of the output distance function**

Parameter	Coefficient	Parameter	Coefficient
y_2	-0.266***	x_{34}	-0.0546***
y_3	-0.173***	x_{45}	0.070*
y_4	-0.073***	y_2x_1	0.003
y_{22}	-0.322***	y_2x_2	0.029*
y_{33}	-0.031***	y_2x_3	-0.046*
y_{44}	-0.014**	y_2x_4	-0.038***
y_{23}	0.250	y_2x_5	-0.019
y_{24}	0.058*	y_3x_1	-0.036***
y_{44}	-0.427	y_3x_2	-0.002
x_1	0.469***	y_3x_3	0.099***
x_2	0.179*	y_3x_4	0.0701*
x_3	0.061	y_3x_5	0.0028
x_4	0.029**	y_4x_1	-0.045
x_5	0.497***	y_4x_2	-0.074*
x_{11}	1.481	y_4x_3	0.083
x_{22}	-0.888	y_4x_4	0.087
x_{33}	0.246*	y_4x_5	0.166
x_{44}	0.186*	NEC	0.267
x_{55}	-0.060	Stock (Tuna)	0.071***
x_{12}	0.032***	Stock (Swordfish)	0.052
x_{13}	-0.580	SST	-0.245**
x_{14}	0.070*	Q_1	0.347**
x_{15}	0.003	Q_2	0.115
x_{23}	0.029*	Q_4	0.218*
x_{24}	-0.545	t	0.015
x_{25}	-0.202	t^2	0.004
x_{34}	0.042*		
Constant	5.536***		
Sigma-u	0.698***		
Sigma-v	0.405***		
Λ	1.725***		
Log-Likelihood	-232.5		
N	302		

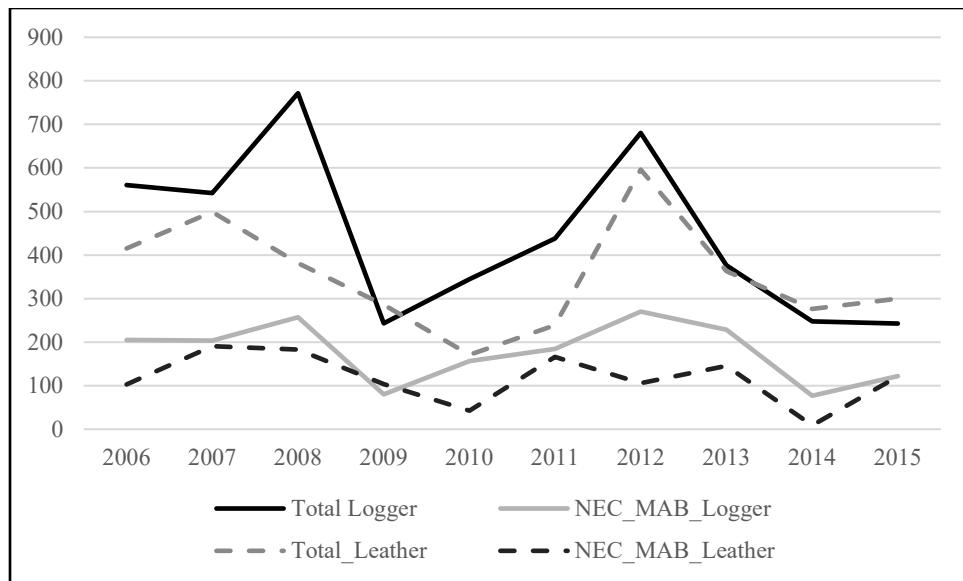
485

486 *P < 0.10; **P < 0.05; ***P < 0.01.


487 Note: y_1 (swordfish) is absent from the estimates because it was used to impose homogeneity.

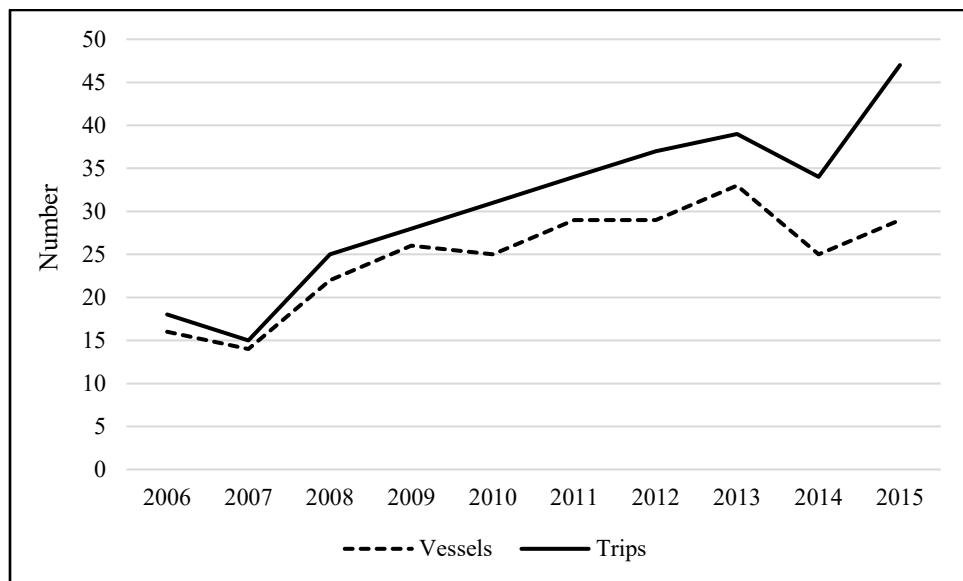
488 **Table 3. Total revenue by year and species**

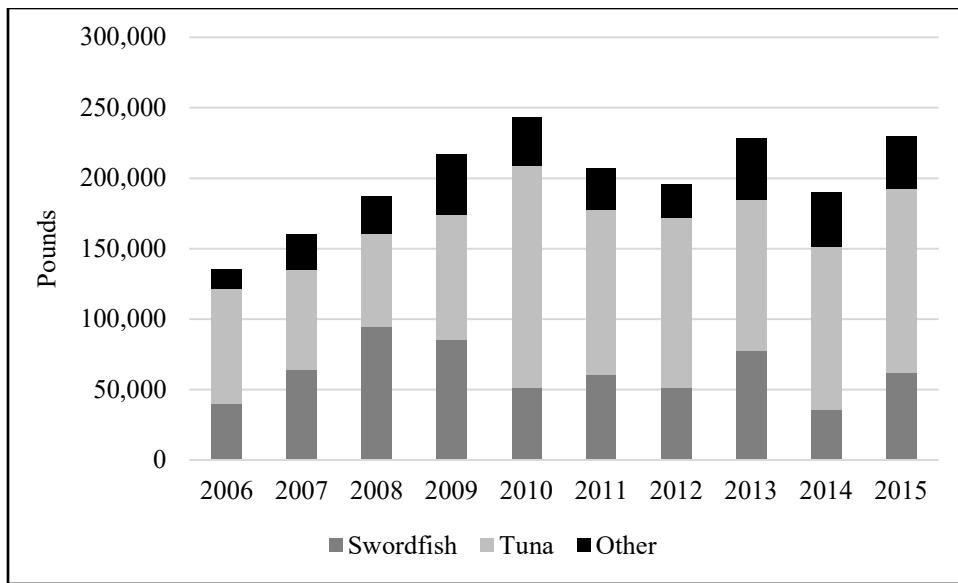
Year	Swordfish	Tuna (all species)	Other	No. Turtles Captured	Total Revenue	Overall Shadow Price Sea Turtle
2006	139,890	236,133	19,157	22	395,180	20,369
2007	236,874	248,464	21,298	30	506,636	19,150
2008	356,273	235,190	33,881	60	625,344	11,818
2009	279,252	354,849	57,508	18	691,609	43,570
2010	239,546	577,021	47,214	22	863,781	44,522
2011	286,657	531,217	53,219	28	871,093	35,277
2012	207,594	533,786	48,567	32	789,947	27,993
2013	357,241	547,048	74,544	48	978,833	23,124
2014	145,040	534,125	66,552	6	745,717	106,916
2015	229,905	581,051	66,009	27	876,965	36,830
Average	247,827	437,888	48,795	29.3	734,511	36,957


489

490 **Figure 1.** The geographic zones are referred to as Caribbean (CAR), Gulf of Mexico
491 (GOM), Florida east coast (FEC), South Atlantic Bight (SAB), Mid-Atlantic Bight (MAB),
492 northeast coastal (NEC), northeast distant (NED), Sargasso Sea (SAR), north central
493 Atlantic (NCA), tuna north (TUN), and tuna south (TUS).

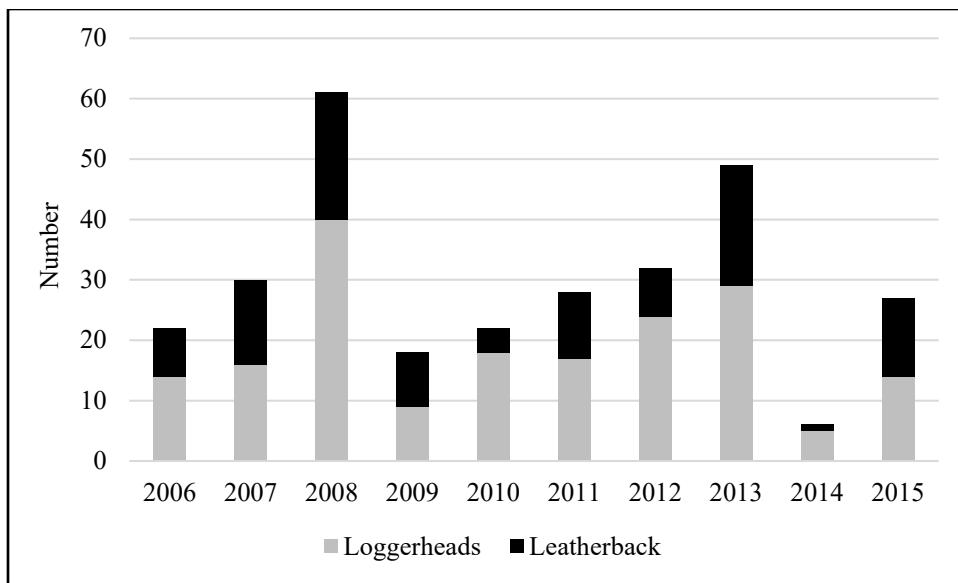
495
496 Source: Cramer and Adams (2000).


497 **Figure 2. NEC/MAB loggerhead and leatherback bycatch estimates (2006-2015).**

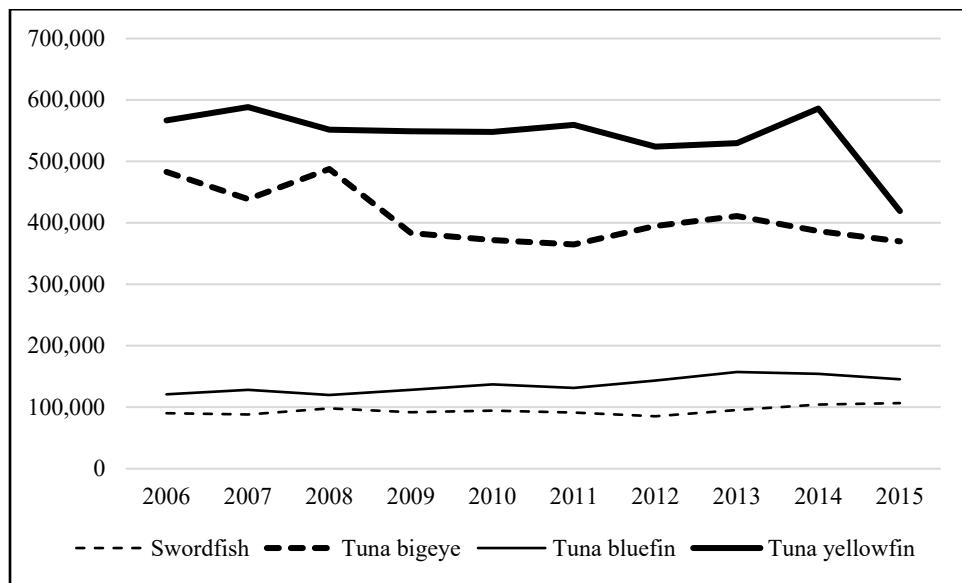

499 Source: Fairfield et al. (2006) to Garrison and Stokes (2020)

500

501 **Figure 3. Number of vessels and trips by year.**

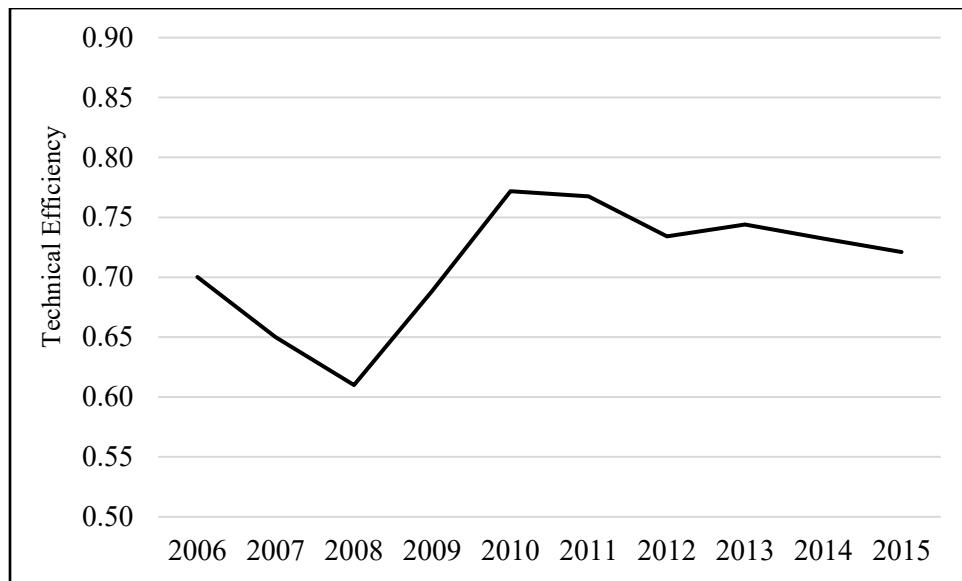

503 **Figure 4. Production of desirable outputs by year**

504


505

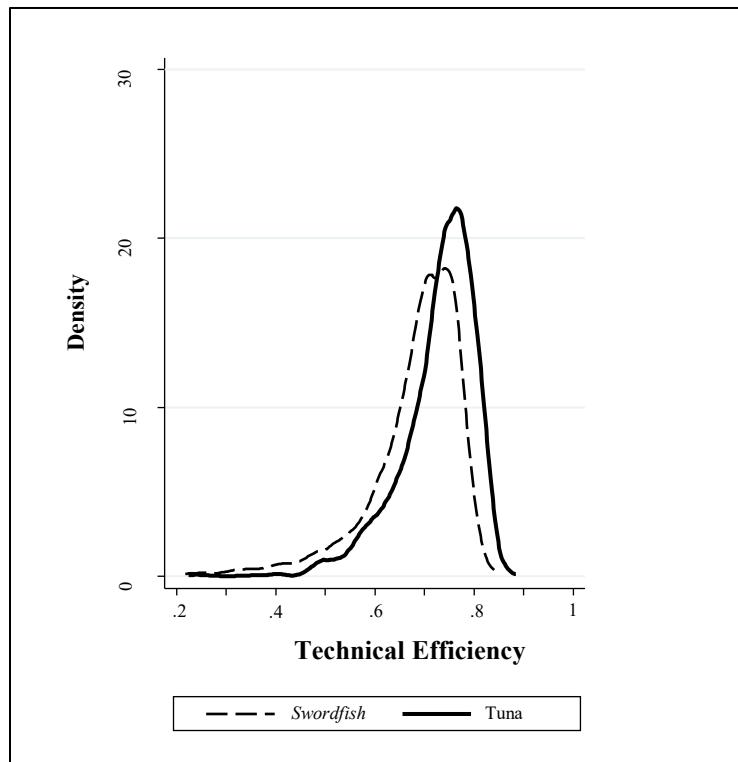
506 **Figure 5. Sea turtle takes by year.**

507


508 **Figure 6. Spawning biomass estimates by year.**

509

510


511 **Figure 7. Technical Efficiency Scores (2006-2015).**

512

513

514 **Figure 8.** Kernel density distribution of TE by trip type.

515